
\square

CHEMISTRY

Written examination 1

Wednesday 13 June 2012
Reading time: $\mathbf{1 1 . 4 5}$ am to $\mathbf{1 2 . 0 0}$ noon ($\mathbf{1 5}$ minutes)
Writing time: 12.00 noon to 1.30 pm ($\mathbf{1}$ hour 30 minutes)

QUESTION AND ANSWER BOOK

Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks
A	20	20	20
B	8	8	55

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers and one scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.
Materials supplied
- Question and answer book of 27 pages.
- A data book.
- Answer sheet for multiple-choice questions.

Instructions

- Write your student number in the space provided above on this page.
- Check that your name and student number as printed on your answer sheet for multiple-choice questions are correct, and sign your name in the space provided to verify this.
- All written responses must be in English.

At the end of the examination

- Place the answer sheet for multiple-choice questions inside the front cover of this book.
- You may keep the data book.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

SECTION A - Multiple-choice questions

Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.
Choose the response that is correct or that best answers the question.
A correct answer scores 1, an incorrect answer scores 0 .
Marks will not be deducted for incorrect answers.
No marks will be given if more than one answer is completed for any question.

Question 1

The correct systematic name for the compound shown above is
A. 2-chlorohex-2-ene
B. 3-chlorohex-2-ene
C. 3-chlorohex-3-ene
D. 4-chlorohex-5-ene

Question 2

The number of structural isomers of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ is
A. 2
B. 3
C. 4
D. 5

Question 3

The following diagram is a simplified representation of a section of DNA.

The main types of bonds at X and Y are
A.

\mathbf{X}	\mathbf{Y}
ionic bonds	hydrogen bonds
covalent bonds	dispersion forces
dispersion forces	ionic bonds
covalent bonds	hydrogen bonds

Question 4

In a double-stranded DNA sample, adenine constitutes 16% of the total number of bases.
The percentage of guanine content in the double strand is
A. 16%
B. 34%
C. 42%
D. 68%

Question 5

Consider the following statements about the structure of proteins.
I The primary structure of a protein is determined by the sequence of amino acid residues.
II The secondary structure of a protein is the result of hydrogen bonding between -NH and -CO groups.
III The tertiary structure of a protein involves bonding between the side chains on the amino acid residues.
Of these statements
A. only I and III are true.
B. only I and II are true.
C. only II and III are true.
D. I, II and III are all true.

Question 6

Which one of the following amino acids is likely to be most polar in an aqueous solution at pH 7 ?
A. glutamic acid
B. glycine
C. leucine
D. valine

Question 7

Enzymes play an important role in biochemical reactions. Consider the following statements relating to enzyme-catalysed reactions.

I The shapes of the substrate and the active site of the enzyme are complementary.
II When enzymes are denatured, the shape and structure of the active sites are not altered.
III The substrate forms bonds with the active site of the enzyme.
Of these statements
A. only I is true.
B. only III is true.
C. only I and III are true.
D. I, II and III are all true.

Question 8

In the laboratory, salicylic acid can be used to produce two different compounds as shown in the diagram below. These compounds are key components of pharmaceutical products.

Which one of the following correctly identifies reagent X and compound Y ?

	reagent \mathbf{X}	compound \mathbf{Y}
A.	methanol	methyl salicylate
B.	methanoic acid	methyl salicylate
C.	methanoic acid	acetylsalicylic acid (aspirin)
D.	methanol	acetylsalicylic acid (aspirin)

Use the following information to answer Questions 9-11.

Question 9

Which one of the following is the correct systematic name of this compound?
A. ethyl propanoate
B. ethyl ethanoate
C. propyl ethanoate
D. propyl pentanoate

Question 10

The species that produces the molecular ion peak in the mass spectrum of this compound is
A. $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right]^{+}$
B. $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right]^{2+}$
C. $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right]^{-}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$

Question 11

Which one of the following infrared (IR) spectra is consistent with the structure of this compound?

Due to copyright restriction, this material is not supplied.

Question 12

The following chromatogram was produced when $0.1 \mu \mathrm{~g}$ of decane was passed through a gas chromatography column.

The chromatogram produced when $0.2 \mu \mathrm{~g}$ of decane is passed through the same column under identical conditions is best represented by
A.

B.

C.

D.

Question 13

15.0 mL of 10.0 M HCl is added to 60.0 mL of deionised water.

The concentration of the diluted acid is
A. $\quad 3.33 \mathrm{M}$
B. 2.50 M
C. $\quad 2.00 \mathrm{M}$
D. 0.500 M

Question 14

A desalination plant produces 200 gigalitres (GL) of fresh water each year. The maximum level of boron permitted in desalinated water is $0.5 \mathrm{ppm}\left(0.5 \mathrm{mg} \mathrm{L}^{-1}\right)$. The maximum mass, in kilograms, of boron that is permitted in one year's production of desalinated water is
A. 9.26×10^{3}
B. 1.0×10^{5}
C. 1.08×10^{6}
D. 1.0×10^{8}

Question 15

A sample of the anticancer drug Taxol ${ }^{\circledR}, \mathrm{C}_{47} \mathrm{H}_{51} \mathrm{NO}_{14}$, contains 0.157 g of carbon.
The mass, in grams, of oxygen in the sample is
A. 0.0468
B. 0.0624
C. 0.209
D. 0.703

Question 16

A helium balloon is inflated to a volume of 5.65 L and a pressure of 10.2 atm at a temperature of $25^{\circ} \mathrm{C}$.
The amount of helium, in moles, in the balloon is
A. 0.023
B. 0.276
C. 2.36
D. 27.95

Question 17

Which titration curve best represents the change in pH as 0.100 M NaOH solution is added to a 10.0 mL aliquot of 0.100 M HCl solution?
A.

B.

C.

D.

Question 18

2.1 g of an alkene that contains only one double bond per molecule reacted completely with 8.0 g of bromine, Br_{2}. The molar mass of bromine, Br_{2}, is $160 \mathrm{~g} \mathrm{~mol}^{-1}$.
Which one of the following is the molecular formula of the alkene?
A. $\mathrm{C}_{5} \mathrm{H}_{10}$
B. $\mathrm{C}_{4} \mathrm{H}_{8}$
C. $\mathrm{C}_{3} \mathrm{H}_{6}$
D. $\mathrm{C}_{2} \mathrm{H}_{4}$

Question 19

The oxidation state of phosphorus in the pyrophosphate ion $\mathrm{P}_{2} \mathrm{O}_{7}{ }^{4}$ is
A. +3.5
B. +5
C. +7
D. +10

Question 20

Consider the following reaction.

$$
\mathrm{IO}_{3}^{-}(\mathrm{aq})+5 \mathrm{I}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{I}_{2}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The correct half equation for the reduction reaction is
A. $2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}^{-}$
B. $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C. $\quad \mathrm{IO}_{3}^{-}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{~s})+3 \mathrm{O}^{2-}(\mathrm{aq})+4 \mathrm{e}^{-}$
D. $2 \mathrm{IO}_{3}^{-}(\mathrm{aq})+12 \mathrm{H}^{+}(\mathrm{aq})+10 \mathrm{e}^{-} \rightarrow \mathrm{I}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

SECTION B - Short answer questions

Instructions for Section B

Answer all questions in the spaces provided. Write using black or blue pen.
To obtain full marks for your responses you should

- give simplified answers with an appropriate number of significant figures to all numerical questions; unsimplified answers will not be given full marks.
- show all working in your answers to numerical questions. No credit will be given for an incorrect answer unless it is accompanied by details of the working.
- make sure chemical equations are balanced and that the formulas for individual substances include an indication of state; for example, $\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{NaCl}(\mathrm{s})$.

Question 1

a. The cellulose that is present in plant matter cannot be directly fermented to produce bioethanol. The cellulose polymer must first be broken down into its constituent monomers.
A section of cellulose polymer is shown below.

i. What is the name of the monomer from which cellulose is formed?
ii. Complete the following chemical equation to show the formation of ethanol by fermentation of the cellulose monomer.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq}) \longrightarrow \longrightarrow+
$$

iii. Ethanol can be manufactured directly from ethene gas in the presence of a catalyst. Write a balanced equation for this reaction.

$$
1+1+1=3 \text { marks }
$$

b. Triglycerides are an important source of energy in the body. During digestion, triglycerides are broken down in the small intestine by the enzyme lipase. An incomplete chemical equation that shows the hydrolysis of a triglyceride is shown below.

i. In the spaces provided above, balance the equation by adding appropriate coefficients for product A and product B.
ii. Name the fatty acid that is produced by the hydrolysis of this triglyceride.
iii. The fatty acid produced in the above reaction is completely oxidised to produce carbon dioxide and water. Write a balanced equation for the oxidation reaction.
$1+1+2=4$ marks

Question 2

A drop that contains a mixture of four amino acids was applied to a thin layer chromatography plate. The plate was placed in solvent G and the following chromatogram was obtained.

The R_{f} values for each of the amino acids in solvent G are provided in Table 1 below.
Table 1. $\mathbf{R}_{\mathbf{f}}$ values in solvent \mathbf{G}

amino acid	$\mathbf{R}_{\mathbf{f}}$ (solvent \mathbf{G})
alanine	0.51
arginine	0.16
threonine	0.51
tyrosine	0.68

a. Name the amino acid that corresponds to spot 1 .
\qquad

The plate was dried, rotated through 90° in an anticlockwise direction and then placed in solvent F. The R_{f} values for each of the amino acids in solvent F are provided in Table 2 below.

Table 2. \mathbf{R}_{f} values in solvent F

amino acid	$\mathbf{R}_{\mathbf{f}}$ (solvent \mathbf{F})
alanine	0.21
arginine	0.21
threonine	0.34
tyrosine	0.43

The following chromatogram was obtained.

b. Circle the spot on chromatogram II that represents alanine.
c. Explain, in terms of the data provided, why only three spots are present in chromatogram I while four spots are present in chromatogram II.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3

Sections of the primary structure of nylon and the primary structure of a protein are shown below.

Nylon is composed of two monomers. The structure of one of the monomers is provided below.

a. Draw the structure of the other monomer.

1 mark
b. Name the functional groups that link the monomers in nylon. \qquad protein. \qquad
2 marks
c. Look carefully at the functional group that links monomers in protein and nylon. The functional groups that connect the protein monomers are oriented in the same direction. The functional groups that link the nylon monomers are oriented in opposing directions.
Explain why the functional groups that link the monomers in protein are oriented differently from the functional groups that link the monomers in nylon. Make appropriate reference to the structures of nylon and protein monomers in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks
d. Perspex (polymethyl methacrylate) is a clear, colourless polymer used for optical applications. The structural formula of the only monomer used in the synthesis of perspex, methyl methacrylate, is shown below.

Draw a section of the polymer showing at least two units of the monomer.

Question 4

a. Give the systematic names of the alkanol and the carboxylic acid that are required to synthesise propyl propanoate.
\qquad
b. Write a balanced chemical equation for the synthesis of propyl propanoate. Use the semi-structural formula for the reactants and products.
\qquad
c. Describe the steps that are required to prepare a sample of pure propyl propanoate using only a pure sample of the alkanol as the starting reagent. Include any reagents that are used in the synthesis. An annotated flow chart may be used in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3 marks
d. Identify one method that could be used to verify that the substance produced is pure propyl propanoate. Explain how this method would indicate that the product is pure propyl propanoate.
\qquad
\qquad
\qquad
\qquad

Question 5

An organic chemist found a bottle in the laboratory that was labelled 'organic cleaning fluid, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ '. She decided to test the liquid. The chemist obtained the following data about the compound in the cleaning fluid: the ${ }^{1} \mathrm{H}$ NMR and
${ }^{13} \mathrm{C}$ NMR spectra, and the infrared spectrum.
The ${ }^{1} \mathrm{H}$ NMR data is summarised in the table below.

Chemical shift (ppm)	Relative peak area	Peak splitting
1.2	6	$\operatorname{doublet}(2)$
2.2	1	$\operatorname{singlet}(1)$
3.6	1	$\operatorname{septet}(7)$

a. i. How many different carbon environments are present in the compound?
\qquad
ii. How many different hydrogen environments are present in the compound?
\qquad
iii. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the signal at 3.6 ppm is split into a septet (7 peaks). What is the number of equivalent protons that are bonded to the adjacent carbon atom(s)?
\qquad

$$
1+1+1=3 \text { marks }
$$

Infrared spectrum

b. Using the Infrared absorption data on page 7 of the Data Book, identify the atoms that are associated with the absorption labelled A on the infrared spectrum.
\qquad
\qquad
1 mark
c. Draw a structure of the compound in the cleaning fluid that is consistent with the NMR and IR data.

Question 6

The iron content in multivitamin tablets was determined using atomic absorption spectroscopy.
The absorbances of four standards were measured.
Three multivitamin tablets were selected. Each tablet was dissolved in 100.0 mL of water. The absorbance of each of the three solutions was then measured.
The following absorbances were obtained.

Solution	Concentration mg/L	Absorbance
Standard 1	0.00	0.06
Standard 2	100.0	0.16
Standard 3	200.0	0.25
Standard 4	300.0	0.36
Standard 5	400.0	0.46
Tablet 1	-	0.39
Tablet 2	-	0.42
Tablet 3	-	0.45

a. i. Use the grid below to construct a calibration graph of the absorbances of the standard solutions.

ii. Determine the average iron content, in milligrams, of the multivitamin tablets.
\qquad
\qquad
\qquad
\qquad
$2+2=4$ marks
Spectroscopic techniques work on the principle that, under certain conditions, atoms, molecules or ions will interact with electromagnetic radiation. The type of interaction depends on the wavelength of the electromagnetic radiation.
b. Name one spectroscopic technique that you have studied this year.
i. Which part of the electromagnetic spectrum does this technique use?
ii. How does this part of the electromagnetic spectrum interact with matter? What information does this spectroscopic technique provide?
\qquad
\qquad
\qquad
\qquad
\qquad
$1+2=3$ marks

Question 7

Students in a chemistry class were required to design a procedure to determine gravimetrically the concentration of lead(II) ethanoate, $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$, in a sample of hair dye. They were instructed to measure the mass of precipitate formed when a sample of the hair dye was added to either 0.1 M potassium iodide or 0.1 M potassium nitrate.
The students were also provided with the following data.

Name	Formula	Relative molar mass	Solubility at $\mathbf{2 5 ~}^{\circ} \mathbf{C}(\mathbf{g} / \mathbf{1 0 0} \mathbf{g})$
lead(II) ethanoate	$\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$	325.3	55.0
lead(II) iodide	PbI_{2}	461.0	0.076
lead(II) nitrate	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	331.2	60.0

Student A decided to precipitate the lead(II) ions in the hair dye as lead(II) iodide. She added an excess of 0.1 M KI solution to 20.0 mL of hair dye. The yellow precipitate was filtered using pre-weighed filter paper. The precipitate was then washed with distilled water. The precipitate and filter paper were gently heated, allowed to cool and then weighed. This step was repeated several times.
Student A's results are summarised below.

Volume of hair dye solution	20.0 mL
Mass of filter paper	0.3120 g
Mass of filter paper plus precipitate after first heating	0.4831 g
Mass of filter paper plus precipitate after second heating	0.4059 g
Mass of filter paper plus precipitate after third heating	0.4059 g
Mass of filter paper plus precipitate after fourth heating	0.4059 g

a. i. Write a balanced equation for the precipitation of lead(II) iodide.
ii. Explain why the filter paper and precipitate were heated and weighed several times.
\qquad
\qquad
\qquad
iii. Calculate the mass, in grams, of lead(II) iodide formed.
\qquad
\qquad
\qquad
iv. What is the mass, in grams, of lead(II) ethanoate that is present in 100.0 mL of hair dye solution?
\qquad
\qquad
\qquad
\qquad
\qquad
$1+1+1+3=6$ marks
Student B decided to precipitate the lead(II) ions in the hair dye as lead(II) nitrate. However, he did not produce any precipitate.
b. Explain why no precipitate of lead(II) nitrate formed.

Question 8

The solubility of highly soluble, thermally unstable salts such as ammonium chloride may be determined by back titration.
In one experiment a 5.00 mL saturated solution of ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$, at $20.0^{\circ} \mathrm{C}$, was diluted with distilled water to 250.0 mL in a standard flask.
A 20.0 mL aliquot of this solution was added to 10.0 mL of 0.400 M NaOH solution. The solution was heated to drive off the ammonia formed by this reaction.
When the flask had cooled, the excess hydroxide ions were neutralised by 14.7 mL of 0.125 M HCl solution. The molar mass of ammonium chloride is $53.5 \mathrm{~g} \mathrm{~mol}^{-1}$.
a. i. Write an equation for the neutralisation reaction.
ii. Determine the amount, in mole, of NaOH that was originally added to the ammonium chloride solution.
\qquad
\qquad
iii. Determine the amount, in mole, of ammonium chloride in the 20.0 mL aliquot.
\qquad
\qquad
\qquad
\qquad
\qquad
iv. Calculate the amount, in mole, of ammonium chloride in 5.00 mL of the saturated solution.
\qquad
\qquad
\qquad
\qquad
v. Calculate the solubility, in gL^{-1}, of ammonium chloride in water at $20^{\circ} \mathrm{C}$.
\qquad
\qquad
\qquad
\qquad
$1+1+2+1+2=7$ marks
b. If the burette was rinsed with water instead of acid before the titration, how would the calculated solubility of ammonium chloride be affected? Explain your answer.
\qquad
\qquad
\qquad
\qquad
2 marks

CHEMISTRY

 Written examination

 Written examination}

Wednesday 13 June 2012

Reading time: 11.45 am to 12.00 noon (15 minutes)
Writing time: 12.00 noon to 1.30 pm (1 hour 30 minutes)

DATA BOOK

Directions to students

- A question and answer book is provided with this data book.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Table of contents

page

1. Periodic table of the elements 3
2. The electrochemical series 4
3. Physical constants 5
4. SI prefixes, their symbols and values 5
5. ${ }^{1} \mathrm{H}$ NMR data 5-6
6. ${ }^{13} \mathrm{C}$ NMR data 7
7. Infrared absorption data 7
8. 2-amino acids (α-amino acids) 8-9
9. Formulas of some fatty acids 10
10. Structural formulas of some important biomolecules 10
11. Acid-base indicators 11
12. Acidity constants, K_{a}, of some weak acids at $25^{\circ} \mathrm{C}$ 11
13. Values of molar enthalpy of combustion of some common fuels at 298 K and 101.3 kPa 11
14. Periodic table of the elements

$\begin{gathered} \mathbf{5 8} \\ \mathbf{C e} \\ 140.1 \\ \text { Cerium } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{5 9} \\ \mathbf{P r} \\ 140.9 \\ \text { Praseodymium } \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{6 0} \\ \mathbf{N d} \\ 144.2 \\ \text { Neodymium } \end{array}$	$\begin{gathered} \mathbf{6 1} \\ \mathbf{P m} \\ (145) \\ \text { Promethium } \end{gathered}$	$\begin{gathered} \hline \mathbf{6 2} \\ \mathbf{S m} \\ 150.4 \\ \text { Samarium } \end{gathered}$	$\begin{gathered} \hline \mathbf{6 3} \\ \mathbf{E u} \\ 152.0 \\ \text { Europium } \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{6 4} \\ \mathbf{G d} \\ 157.3 \\ \text { Gadolinium } \end{gathered}$	$\begin{gathered} \mathbf{6 5} \\ \mathbf{T b} \\ 158.9 \\ \text { Terbium } \end{gathered}$	$\begin{gathered} \mathbf{6 6} \\ \mathbf{D y} \\ 162.5 \\ \text { Dysprosium } \end{gathered}$	$\begin{gathered} \hline \mathbf{6 7} \\ \mathbf{H o} \\ 164.9 \\ \text { Holmium } \end{gathered}$	$\begin{gathered} \mathbf{6 8} \\ \mathbf{E r} \\ 167.3 \\ \text { Erbium } \end{gathered}$	$\begin{gathered} \hline \mathbf{6 9} \\ \mathbf{T m} \\ 168.9 \\ \text { Thulium } \end{gathered}$	$\begin{gathered} \hline \mathbf{7 0} \\ \mathbf{Y b} \\ 173.1 \\ \text { Ytterbium } \end{gathered}$	$\begin{gathered} \hline \mathbf{7 1} \\ \mathbf{L u} \\ 175.0 \\ \text { Lutetium } \end{gathered}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

2. The electrochemical series

	E° in volt
$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{~F}^{-}(\mathrm{aq})$	+2.87
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.77
$\mathrm{Au}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Au}(\mathrm{s})$	+1.68
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(1)$	+1.23
$\mathrm{Br}_{2}(\mathrm{l})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Br}^{-}(\mathrm{aq})$	+1.09
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$	+0.68
$\mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{I}^{-}(\mathrm{aq})$	+0.54
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \rightleftharpoons 4 \mathrm{OH}^{-}(\mathrm{aq})$	+0.40
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$\mathrm{S}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	+0.14
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})$	0.00
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ni}(\mathrm{s})$	-0.23
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Co}(\mathrm{s})$	-0.28
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}(\mathrm{s})$	-1.03
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Al}(\mathrm{s})$	-1.67
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mg}(\mathrm{s})$	-2.34
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Na}(\mathrm{s})$	-2.71
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ca}(\mathrm{s})$	-2.87
$\mathrm{K}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{K}(\mathrm{s})$	-2.93
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Li}(\mathrm{s})$	-3.02

3. Physical constants

Avogadro's constant $\left(N_{\mathrm{A}}\right)=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Charge on one electron $=-1.60 \times 10^{-19} \mathrm{C}$
Faraday constant $(F)=96500 \mathrm{C} \mathrm{mol}^{-1}$
Gas constant $(R)=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Ionic product for water $\left(K_{\mathrm{w}}\right)=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$ at 298 K
(Self ionisation constant)
Molar volume $\left(\mathrm{V}_{\mathrm{m}}\right)$ of an ideal gas at $273 \mathrm{~K}, 101.3 \mathrm{kPa}(\mathrm{STP})=22.4 \mathrm{~L} \mathrm{~mol}^{-1}$
Molar volume $\left(\mathrm{V}_{\mathrm{m}}\right)$ of an ideal gas at $298 \mathrm{~K}, 101.3 \mathrm{kPa}(\mathrm{SLC})=24.5 \mathrm{~L} \mathrm{~mol}^{-1}$
Specific heat capacity (c) of water $=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$
Density (d) of water at $25^{\circ} \mathrm{C}=1.00 \mathrm{~g} \mathrm{~mL}^{-1}$
$1 \mathrm{~atm}=101.3 \mathrm{kPa}=760 \mathrm{~mm} \mathrm{Hg}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$

4. SI prefixes, their symbols and values

SI prefix	Symbol	Value
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

5. ${ }^{1} \mathrm{H}$ NMR data

Typical proton shift values relative to TMS $=0$
These can differ slightly in different solvents. Where more than one proton environment is shown in the formula, the shift refers to the ones in bold letters.

Type of proton		Chemical shift (ppm)
$\mathrm{R}-\mathrm{CH}_{3}$		0.8-1.0
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{R}$		1.2-1.4
$\mathrm{RCH}=\mathrm{CH}-\mathrm{CH}_{3}$		1.6-1.9
$\mathrm{R}_{3}-\mathrm{CH}$		1.4-1.7
		2.0

Type of proton \quad Chemical shift (ppm)
6. ${ }^{13} \mathrm{C}$ NMR data

Type of carbon	Chemical shift (ppm)
$\mathrm{R}-\mathrm{CH}_{3}$	$8-25$
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{R}$	$20-45$
$\mathrm{R}_{3}-\mathrm{CH}$	$40-60$
$\mathrm{R}_{4}-\mathrm{C}$	$36-45$
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{X}$	$15-80$
$\mathrm{R}_{3} \mathrm{C}-\mathrm{NH}_{2}$	$35-70$
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{OH}$	$50-90$
$\mathrm{RC}=\mathrm{CR}^{\mathrm{R}} \mathrm{C}=\mathrm{CR}$	2
RCOOH	$75-95$

7. Infrared absorption data

Characteristic range for infrared absorption

Bond	Wave number $\left(\mathbf{c m}^{\mathbf{- 1}}\right)$
$\mathrm{C}-\mathrm{Cl}$	$700-800$
$\mathrm{C}-\mathrm{C}$	$750-1100$
$\mathrm{C}-\mathrm{O}$	$1000-1300$
$\mathrm{C}=\mathrm{C}$	$1610-1680$
$\mathrm{C}=\mathrm{O}$	$1670-1750$
$\mathrm{O}-\mathrm{H}$ (acids)	$2500-3300$
C-H	$2850-3300$
$\mathrm{O}-\mathrm{H}$ (alcohols)	$3200-3550$
$\mathrm{~N}-\mathrm{H}$ (primary amines)	$3350-3500$

8. 2-amino acids (α-amino acids)

Name	
alanine	
arginine	Ala
asparagine	Arg
aspartic acid	

glutamic acid
Glu

glycine
Gly
$\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}$

isoleucine
Ile

Name	Symbol	Structure
leucine	Leu	
lysine	Lys	
methionine	Met	
phenylalanine	Phe	
proline	Pro	
serine	Ser	
threonine	Thr	
tryptophan	Trp	
tyrosine	Tyr	
valine	Val	

9. Formulas of some fatty acids

Name	Formula
Lauric	$\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COOH}$
Myristic	$\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{COOH}$
Palmitic	$\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{COOH}$
Palmitoleic	$\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{COOH}$
Stearic	$\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}$
Oleic	$\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{COOH}$
Linoleic	$\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{COOH}$
Linolenic	$\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{COOH}$
Arachidic	$\mathrm{C}_{19} \mathrm{H}_{39} \mathrm{COOH}$
Arachidonic	$\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{COOH}$

10. Structural formulas of some important biomolecules

sucrose

glycerol

deoxyribose

adenine

guanine

cytosine

thymine

phosphate
11. Acid-base indicators

Name	pH range	Colour change		$K_{\mathbf{a}}$
		Acid	Base	
Thymol blue	$1.2-2.8$	red	yellow	2×10^{-2}
Methyl orange	$3.1-4.4$	red	yellow	2×10^{-4}
Bromophenol blue	$3.0-4.6$	yellow	blue	6×10^{-5}
Methyl red	$4.2-6.3$	red	yellow	8×10^{-6}
Bromothymol blue	$6.0-7.6$	yellow	blue	1×10^{-7}
Phenol red	$6.8-8.4$	yellow	red	1×10^{-8}
Phenolphthalein	$8.3-10.0$	colourless	red	5×10^{-10}

12. Acidity constants, K_{a}, of some weak acids at $25^{\circ} \mathrm{C}$

Name	Formula	K_{a}
Ammonium ion	NH_{4}^{+}	5.6×10^{-10}
Benzoic	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	6.4×10^{-5}
Boric	$\mathrm{H}_{3} \mathrm{BO}_{3}$	5.8×10^{-10}
Ethanoic	$\mathrm{CH}_{3} \mathrm{COOH}$	1.7×10^{-5}
Hydrocyanic	HCN	6.3×10^{-10}
Hydrofluoric	HF	7.6×10^{-4}
Hypobromous	HOBr	2.4×10^{-9}
Hypochlorous	HOCl	2.9×10^{-8}
Lactic	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$	1.4×10^{-4}
Methanoic	HCOOH^{2}	1.8×10^{-4}
Nitrous	HNO_{2}	7.2×10^{-4}
Propanoic	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$	1.3×10^{-5}

13. Values of molar enthalpy of combustion of some common fuels at 298 K and 101.3 kPa

Substance	Formula	State	$\Delta \boldsymbol{H}_{\mathbf{c}}\left(\mathbf{k J ~ m o l}^{\mathbf{1}} \mathbf{)}\right.$
hydrogen	H_{2}	g	-286
carbon (graphite)	C	s	-394
methane	CH_{4}	g	-889
ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	g	-1557
propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	g	-2217
butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	g	-2874
pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	1	-3509
hexane	$\mathrm{C}_{6} \mathrm{H}_{14}$	1	-4158
octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	1	-5464
ethene	$\mathrm{C}_{2} \mathrm{H}_{4}$	g	-1409
methanol	$\mathrm{CH}_{3} \mathrm{OH}$	1	-725
ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	1	-1364
1-propanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	1	-2016
2-propanol	$\mathrm{CH}_{3} \mathrm{CHOHCH}$	-2003	
glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	1	-2816

